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Abstract. Grover presented the phase-shift search by replacing the selective inversions by selective phase
shifts of π/3. In this paper, we investigate the phase-shift search with general equal phase shifts. We show
that for small uncertainties, the failure probability of the phase-π/3 search is smaller than the general phase-
shift search and for large uncertainties, the success probability of the large phase-shift search is larger than
the phase-π/3 search. Therefore, the large phase-shift search is suitable for large-size of databases.

PACS. 03.67.Lx Quantum computation

1 Introduction

Grover’s quantum search algorithm is used to find a tar-
get state in an unsorted database of size N [1,2]. Grover’s
quantum search algorithm can be considered as a rota-
tion of the state vectors in two-dimensional Hilbert space
generated by the initial (s) and target (t) vectors [1].
The amplitude of the desired state increases monotoni-
cally towards its maximum and decreases monotonically
after reaching the maximum [3]. As mentioned in [2,4],
unless we stop when it is right at the target state, it will
drift away. A new search algorithm was presented in [2] to
avoid drifting away from the target state. Grover proposed
the new algorithm by replacing the selective inversions by
selective phase shifts of π/3, the algorithm converges to
the target state irrespective of the number of iterations. In
his paper, Grover demonstrated the power of his algorithm
by calculating its success probability when only a single
query into the database was allowed. It turned out that if
the success probability for a random item in the database
was 1 − ε, where ε is known to randomly lie somewhere
in the range (0, ε0), after a single quantum query into the
database, Grover’s new phase-shift algorithm was able to
increase the success probability to 1− ε30. This was shown
to be superior to existing algorithms and later shown to
be optimal [7,8].
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In [5,6], adiabatic quantum computation provides an
alternative scheme for amplitude amplification that also
does not drift away from the solution. In [8], an algorithm
for obtaining fixed points in iterative quantum transfor-
mations was presented and the average number of oracle
queries for the fixed-point search algorithm was discussed.
In [9], Boyer et al. described an algorithm that succeeds
with probability approaching to 1. In [10], we discussed the
phase-shift search algorithm with different phase shifts.

As discussed below, the implementation of the general
phase-shift search relies on selective phase shifts. In this
paper, we investigate the phase-shift search with general
but equal phase shifts. We are able to considerably im-
prove the algorithm by varying the phase-shift away from
π/3 when ε is large. As well-known, the smaller deviation
makes the algorithm converge to the target state more
rapidly. The deviation for the phase-π/3 search is ε3 [2].
For the large size of database, we investigate that the de-
viation for any phase shifts of θ > π/3 is smaller than ε3

and the closer to π the phase shifts are, the smaller the de-
viation is. In this paper, we study the performance of the
general phase-shift search for only one iteration. This also
determines the failure probability and success probability
of the general phase-shift search after recursively applying
the single iteration for n times. Note that we neglect the
effects of decoherence completely in this paper.

This paper is organized as follows. In Section 3, we
give the necessary and sufficient conditions for the smaller
deviation than ε3. In Section 4, we show that the phase-
π/3 search algorithm performs well for the small ε. In
Section 6, we demonstrate that the closer to π the phase
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shifts are, the smaller the deviation is. In Section 7, we pro-
pose the ratio measurement of the behavior of the phase-θ
search algorithm for one query.

2 Grover’s phase-shift search
and the reduction of the deviation

The standard amplitude amplification algorithm would
overshoot the target state. To avoid drifting away from the
target state, Grover presented the phase-shift search [2].

In [2] the transformation UR
π/3
s U+R

π/3
t U was applied

to the initial state |s〉,
Rπ/3

s = I − [1 − ei π
3 ]|s〉〈s|,

R
π/3
t = I − [1 − ei π

3 ]|t〉〈t|, (1)

where |t〉 stands for the target state. The transforma-
tion UR

π/3
s U+R

π/3
t U is denoted as Grover’s the phase-π/3

search algorithm in [8].
Grover let θ denote π/3. Then

Rθ
s = I − [1 − eiθ]|s〉〈s|,

Rθ
t = I − [1 − eiθ]|t〉〈t|. (2)

The transformation URθ
sU

+Rθ
t U is called as the phase-θ

search algorithm in this paper. As indicated in [2], when
θ = π, this becomes one iteration of the amplitude am-
plification algorithm [1,4]. Note that if we apply U to
the initial state |s〉, then the amplitude of reaching the
target state |t〉 is Uts [1]. Applying the transformation
URθ

sU
+Rθ

t U to the start state |s〉, Grover derived the fol-
lowing,

URθ
sU

+Rθ
t U |s〉 = U |s〉[eiθ

+ |Uts|2 (eiθ − 1)2] + |t〉Uts(eiθ − 1). (3)

Let D(θ) be the deviation from the t state for any phase
shifts of θ. Then from (3) the following was obtained in [2],

D(θ) = (1 − |Uts|2)|eiθ + |Uts|2 (eiθ − 1)2|2. (4)

Grover chose π/3 as phase shifts and let |Uts|2 = 1 − ε,
where 0 < ε < 1. Substituting |Uts|2 = 1−ε, the deviation
from the t state becomes D(π/3) = ε3 [2].

Deviation D(θ) in (4) can be reduced as follows. For
any θ,

eiθ + |Uts|2 (eiθ − 1)2 = eiθ + 2(cos θ − 1)eiθ(1 − ε)

= eiθ[1 + 2(cos θ − 1)(1 − ε)]. (5)

So by (5), we obtain

D(θ) = ε[1 + 2(cos θ − 1)(1 − ε)]2. (6)

In this paper, we study the phase-shift search algorithm
with two equal phase shifts. It is clear that it is enough
to consider θ in [0, π]. It can be shown that the maximum
and minimum of deviation D(θ) are 1 and 0. That is,

0 ≤ D(θ) ≤ 1. (7)

Fig. 1. (Color online) 3D plot for D(θ) − ε3.

Table 1. The phase shifts for deviations.

θ ε

when θ > π/3 D(θ) < ε3 for ε > 1 − 2/(3 − 2 cos θ)
when θ < π/3 D(θ) > ε3 for any ε
when θ > π/3 D(θ) > ε3 for ε < 1 − 2/(3 − 2 cos θ)

3 The phase shifts for smaller deviation

As indicated in [1], in the case of database search, |Uts| is
almost 1/

√
N , where N is the size of the database. Thus,

ε is almost 1− 1/N and ε is close to 1 for the large size of
database. It is known that the deviation for Grover’s the
phase-π/3 search is ε3. In this section, we give the phase
shifts for smaller deviation than ε3.

3.1 Necessary and sufficient conditions

From (6) let us calculate

D(θ) − ε3 = ε[1 + 2(cos θ − 1)(1 − ε)]2 − ε3

= ε(1 − ε)(2 cos θ − 1)
× [2 + (2 cos θ − 3)(1 − ε)]. (8)

See Figures 1 and 4. From (8), we have the following state-
ment.

Lemma 1. Deviation D(θ) in (6) for any phase shifts of
θ in [0, π/3) is greater than ε3 for any ε. That is, D(θ) > ε3

for any θ in [0, π/3) and for any ε. See Table 1.
The argument is as follows.
When 0 ≤ θ < π/3, 0 < 2 cos θ − 1 ≤ 1 and 2ε <

2 + (2 cos θ − 3)(1 − ε) ≤ 1 + ε for any ε. Therefore when
0 ≤ θ < π/3, it follows (8) that D(θ) > ε3 for any ε.

From (8) and Lemma 1, the following lemma holds
immediately. See Table 1.

Lemma 2. D(θ) < ε3 if and only if

θ > π/3 ∧ ε > 1 − 2/(3 − 2 cos θ). (9)
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Table 2. The phase shifts for D(θ) < ε3.

θ ε

when θ > π/3 D(θ) < ε3 for ε > 3/5
when π/3 < θ ≤ 2π/3 D(θ) < ε3 for ε > 1/2
when π/3 < θ ≤ π/2 D(θ) < ε3 for ε > 1/3
when π/3 < θ ≤ arccos 1−3δ

2(1−δ)
D(θ) < ε3 for ε > δ

The following remark is used to describe the monotonicity
of 1 − 2/(3 − 2 cos θ) in (9). The monotonicity is used to
find smaller deviation than ε3 below.

Remark 1. 1− 2/(3− 2 cos θ) increases from −1 to 3/5
as θ increases from 0 to π. Thus,

−1 ≤ 1 − 2/(3 − 2 cos θ) ≤ 3/5. (10)

3.2 The phase shifts for smaller deviation

In this subsection, we give the phase shifts for which the
deviations are smaller than ε3.

Corollary 1. Deviation D(θ) for any phase shifts of θ in
(π/3, α] is smaller than ε3 whenever ε > 1−2/(3−2 cosα).

Proof. By Remark 1, 1− 2/(3− 2 cos θ) increases from
0 to 1−2/(3−2 cosα) as θ increases from π/3 to α. Thus,
0 < 1 − 2/(3 − 2 cos θ) ≤ 1 − 2/(3 − 2 cosα) whenever
π/3 < θ ≤ α. Therefore, when ε > 1 − 2/(3 − 2 cosα),
always ε > 1−2/(3−2 cosθ). Hence, this corollary follows
Lemma 2.

When α = π, 2π/3, π/2 and arccos 1−3δ
2(1−δ) , from Corol-

lary 1 we have the following phase shifts for smaller devi-
ations than ε3. See Table 2.

Result 1. For any phase shifts of θ > π/3, deviation
D(θ) < ε3 for ε > 3/5. See Figure 2a.

Result 2. For any phase shifts of θ in (π/3, 2π/3],
deviation D(θ) < ε3 for ε > 1/2. See Figure 2b.

Result 3. For any phase shifts of θ in (π/3, π/2], devi-
ation D(θ) < ε3 for ε > 1/3. See Figure 2c.

Result 4. When ε > δ, for any phase shifts of θ in (π/3,
arccos 1−3δ

2(1−δ) ], deviation D(θ) < ε3.
Note that limδ→0 arccos 1−3δ

2(1−δ) = π/3.
Our conclusion is when we search large database, i.e.,

ε is large, for any phase shifts of θ > π/3 the deviation is
smaller than ε3.

4 The phase-π/3 search is optimal for small
uncertainties

As indicated in [1], the size of the database is very large,
i.e., ε is large. However, it is interesting to investigate
the performances of the phase-π/3 search and the phase-θ
search for small ε.

4.1 The phase-π/3 search possesses smaller failure
probability

As said in [2], ε3 and D(θ) are the failure probabilities of
the phase-π/3 search and the phase-θ search, respectively.

Fig. 2. D(θ) − ε3, where (a) ε = 0.8, (b) ε = 0.55, (c) ε = 0.4.

Let us consider the ratio of the two failure probabilities.
It is easy to see that limε→0 ε3/D(θ) = 0 for any θ �=
π/3. That is, ε3 = o(D(θ)). In other words, ε3 is smaller
than D(θ) for small ε. It means that ε3 approaches 0 more
rapidly than D(θ) as ε approaches 0.

4.2 The conditions under which the phase-π/3 search
behaves well

Here, we discuss what ε satisfies ε3 < D(θ). From (8) and
Lemma 1, we have the following lemma.

Lemma 3. D(θ) > ε3 if and only if θ > π/3 and ε <
1 − 2/(3 − 2 cos θ) or 0 ≤ θ < π/3. See Table 1.

The following corollary follows Lemma 3.
Corollary 2. When π/3 < α ≤ θ and ε < 1 − 2/(3 −

2 cosα), D(θ) > ε3.
The argument is as follows. By Remark 1, 1 − 2/(3 −

2 cos θ) increases from 1 − 2/(3 − 2 cosα) to 3/5 as θ
increases from α to π. Thus, when π/3 < α ≤ θ,
1 − 2/(3 − 2 cosα) ≤ 1 − 2/(3 − 2 cos θ). Consequently,
this corollary holds by Lemma 3.

From Corollary 2 we have the following results.
Result 5. When θ ≥ π/2, D(θ) > ε3 for ε < 1/3.
Result 6. When θ ≥ 2π/3, D(θ) > ε3 for ε < 1/2.
Result 7. When θ ≥ arccos 1−3δ

2(1−δ) , D(θ) > ε3 for ε < δ.
Our conclusion is that for small ε, the search algorithm

performs optimal for θ = π/3. By means of the perfor-
mance the phase-π/3 search algorithm can be applied to
quantum error corrections.

5 Zero deviation and average zero deviation
points

5.1 Zero deviation

Let d = 1 + 2(cos θ − 1)(1 − ε). Then, deviation D(θ) in
(6) can be rewritten as D(θ) = εd2. Let d = 0. Then we
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obtain cos θ = 1 − 1
2(1−ε) , where 0 < ε ≤ 3/4 to make

∣
∣
∣1 − 1

2(1−ε)

∣
∣
∣ ≤ 1. Conclusively, if Uts is given, that is, ε is

fixed, then we choose θ = arccos[1 − 1
2(1−ε) ], which is in

(π/3,π], as phase shifts. arccos[1 − 1
2(1−ε) ] will obviously

make the deviation vanish and is called as a zero deviation
point. It means that one iteration will reach t state with
certainty if the zero deviation point is chosen as phase
shifts. Note that limε→0 arccos[1 − 1

2(1−ε) ] = π/3. This
says that π/3 is the limit of the zero deviation points θ
though it is not a zero deviation point.

5.2 Average zero deviation points

When 0 < ε ≤ 3/4, arccos[1 − 1
2(1−ε) ] is called as a zero

deviation point. Since ε is not given, the zero deviation
point is unknown. However, if we know the range of ε,
then in terms of mean-value theorem for integrals, we can
find the average value θ̄ of the zero deviation points θ.
Here, we assume that ε is uniformly distributed in the
interval (β, α) ⊆ (0, 3/4].

Let ε be in the range (β, α), where (β, α) ⊆ (0, 3/4].
Then we calculate the average value of 1− 1

2(1−ε) over the
range (β, α) as follows

1
α − β

∫ α

β

[

1 − 1
2(1 − ε)

]

dε = 1 +
1

2(α − β)
ln

1 − α

1 − β
.

(11)
It can be argued that −1 ≤ 1+ 1

2(α−β) ln 1−α
1−β < 1/2. Thus,

it is reasonable to define

θ̄ = arccos
[

1 +
1

2(α − β)
ln

1 − α

1 − β

]

. (12)

θ̄ can be considered as the average value of the zero devi-
ation points θ and is called as the average zero deviation
point. It can be seen that π/3 < θ̄ ≤ π.

When θ̄ is chosen as phase shift, we obtain the follow-
ing deviation

D(θ̄) = ε

(

1 +
1 − ε

α − β
ln

1 − α

1 − β

)2

. (13)

Let us compute D(θ̄) − ε3 as follows

D(θ̄) − ε3 =

ε

(

1 +
1

α − β
ln

1 − α

1 − β

)

(1− ε)
(

1 +
1 − ε

α − β
ln

1 − α

1 − β
+ ε

)

.

(14)

Notice that 1 + 1
α−β ln 1−α

1−β < 0 and 1 − 1
α−β ln 1−α

1−β > 0.
Let κ = 1 − 2/(1 − 1

α−β ln 1−α
1−β ). It can be proven that

0 < κ < 1. We can conclude when ε > κ, D(θ̄) < ε3.
We will find the average zero deviation point θ̄ for the

ranges (0, 1/2) and (0, 3/4) of ε, respectively, as follows.
Example 1. Let ε lie in the range (0, 1/2]. By (12),

the average zero deviation point θ̄1 = arccos(1 − ln 2) =

Fig. 3. D(θ), where (a) ε = 0.8, (b) ε = 0.75, (c) ε = 0.5.

72◦30′. Taking θ̄1 as phase shifts, by (13) deviation
D(θ̄1) = ε[1 − 2(1 − ε) ln 2]2. Deviation D(θ̄1) for phase
shifts of θ̄1 is smaller than ε3, i.e., D(θ̄1) < ε3, if and only
if ε > 2 ln 2−1

2 ln 2+1 = 0.16.
Example 2. Let (0, 3/4] be the range of ε. Then by

(12), the average zero deviation point θ̄2 = arccos(1 −
4
3 ln 2) = 86◦. Choosing θ̄2 as phase shifts, by (13) devia-
tion D(θ̄2) = ε[1−8

3 (1 − ε) ln 2]2 and D(θ̄2) is smaller than
ε3 when ε > 0.30.

6 Monotonicity of the deviation for large ε

As discussed above, when ε is fixed and lies in the range
(0, 3/4] and arccos(1− 1

2(1−ε) ) is chosen as phase shifts, the

deviation vanishes. When ε > 3/4, since
∣
∣
∣1 − 1

2(1−ε)

∣
∣
∣ > 1,

deviation D(θ) does not vanish for any phase shifts of θ
in [0, π].

When ε ≥ 3/4,

−1 ≤ 2(cos θ − 1)(1 − ε) ≤ 0 (15)

and 0 ≤ d ≤ 1. When Uts is given, that is, ε is fixed, by
using (15) it can be shown that deviation D(θ) monoton-
ically decreases from ε to ε(4ε − 3)2 as θ increases from 0
to π. See Figure 3. for the monotonicity of D(θ). When
θ = π, the deviation gets its minimum ε(4ε− 3)2. That is,

ε(4ε − 3)2 ≤ D(θ) (16)

for any phase shifts of θ in [0, π], whenever ε ≥ 3/4.
Peculiarly, the deviation ε(4ε− 3)2 < ε3 whenever ε >

3/5. The inequality in (16) also follows that (4ε − 3) ≤ d
for any phase shifts of θ in [0, π] whenever ε ≥ 3/4.

See Table 3 for the deviations D(θ) for θ =
π/2, 2π/3, 3π/4, 5π/6,π. Also see Figure 4.

Remark 2. From the discussion above, it is easy to see
that the closer to π the phase shifts are, the smaller the
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Table 3. The deviations for ε > 3/4.

θ π/2 2π/3 3π/4 5π/6

D(θ) ε(2ε − 1)2 ε(3ε − 2)2 ε((
√

2+2)ε − (
√

2+1))2 ε((
√

3+2)ε − (
√

3+1))2

Fig. 4. D(θ), where (a) θ = π/3, (b) θ = π/2, (c) θ = 2π/3,
(d) θ = 3π/4, (e) θ = 5π/6, (f) θ = π.

deviation is, when ε ≥ 3/4. By means of the inequality
in (16) we can discuss the lower bound of the number of
iterations to find the t state.

Note that when the selective phase shift θ becomes π,
the phase-π search is the amplitude amplification search.

7 The ratio measurement of the success
probabilities for one query

7.1 The ratio of the success probabilities

Clearly, the greater the success probability is, the better
the algorithm performs. In other words, the more rapidly
the algorithm converges. In this section, it is demonstrated
that the limit of the ratio of success probabilities of the
phase-θ and the phase-π/3 search algorithms is used to
quantify the performance of the phase-θ search algorithm.

From (7), let ∆(θ) = 1−D(θ). Then ∆(θ) is the success
probability with which the transformation URθ

sU
+Rθ

t U in
(3) drives the start state to the target state. For instance,
∆(π/3) = 1−D(π/3) = 1−ε3, which is the success proba-
bility of the phase-π/3 search algorithm for one query. See
Page 1 in [2]. Explicitly, ∆(θ) is not the desired measure-
ment free of ε for the phase-θ search algorithm because
∆(θ) is also a function of ε.

Let us compute the limit of ∆(θ) as ε approaches 1 as
follows.

limε→1 ∆(θ) = limε→1(1−ε(1+2(cosθ−1)(1−ε))2)) =
0, for any θ in [0, π].

It is straightforward that the above limit can not be
used to describe the performance of the phase-θ search

Table 4. ρ’s values for the phase-θ search.

θ π/2 2π/3 3π/4 5π/6 π

ρ 5/3 7/3 (5 + 2
√

2)/3 = 2.6 (5 + 2
√

3)/3 = 2.8 3

algorithm for any phase shifts of θ in [0, π] because the
limit always is zero for any θ in [0, π].

It is natural to consider and calculate ∆(θ)
∆(π/3) as follows

∆(θ)
∆(π/3)

=

4
(

cos2 θ
)

ε2−8(cos θ)ε2+4ε2+4 (cos θ) ε−4
(

cos2 θ
)

ε + 1
ε2 + ε+1

.

(17)

Then we obtain the following limit of ∆(θ)
∆(π/3) as ε ap-

proaches 1. Let

ρ = lim
ε→1

∆(θ)
∆(π/3)

=
5 − 4 cos θ

3
. (18)

Then ρ can be considered as the ratio of success probabil-
ities for the phase-θ and the phase-π/3 search algorithms
for large ε. Notice that ρ is free of ε and only depends on
θ. Hence, ρ can be considered as a measurement of per-
formance of phase-θ search algorithm for any phase shifts
of θ in [0, π].

We can follow [2] to define by the recursion Um+1 =
UmRθ

sU
+
mRθ

t Um, where U0 = U . For the phase-π/3 search,
after recursive application of the basic iteration m times,
the success probability |Um,ts| = 1 − ε3

m

[2]. For the
phase-θ search, as well we can derive the success prob-
ability |Um,ts| and the failure probability 1 − |Um,ts| af-
ter recursive application of the basic iteration m times.
Fixed points of the phase-θ search algorithm are discussed
in [11].

7.2 The larger phase shifts than π/3 for larger size
of database

It can be shown that ρ increases from 1/3 to 3 as θ in-
creases from 0 to π. In particular, ρ increases from 1 to 3
as θ increases from π/3 to π. This also says that for large
databases, the larger the phase shifts are, the greater the
success probabilities are. For instance, ρ = 2.8 for phase-
5π/6 search. This means that for large ε, the ratio of suc-
cess probabilities for the phase-5π/6 and the phase-π/3
search is 2.8. See Table 4.

8 Summary

In this paper, we give the phase shifts for smaller deviation
than ε3. When ε ≤ 3/4 and ε is given, we choose the zero
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deviation point as phase shifts to find the desired state for
one iteration. When ε ≥ 3/4, the deviation decreases from
ε3 to ε(4ε − 3)2 as θ increases from π/3 to π. It is shown
that for small ε, the phase-π/3 search behaves better than
the general phase-θ search. Therefore the phase-π/3 search
can be applied to quantum error correction. We propose
the limit of the ratio of success probabilities of the phase-
θ and the phase-π/3 search algorithms as a measure of
efficiency of a single phase-θ iteration. The measure can
help us find the optimal phase shifts for small deviation
and large success probability. Thus, there are more choices
for phase shifts to adjust an algorithm for large size of
database and more loose constraint opens a door for more
feasible or robust realization.

We want to thank Lov K. Grover for his helpful discussions
and comments on the original manuscript (in December, 2005)
and the reviewer for the helpful comments on this paper and
useful discussions about fixed points of the phase-θ search.

References

1. L.K. Grover, Phys. Rev. Lett. 80, 4329 (1998)
2. L.K. Grover, Phys. Rev. Lett. 95, 150501 (2005)

3. D. Li et al., Theor. Math. Phys. 144, 1279 (2005)
4. G. Brassard, Science 275, 627 (1997)
5. E. Farhi et al., Science 292, 472 (2001)
6. J. Roland, N.J. Cerf, Phys. Rev. A 65, 042308 (2002)
7. L.K. Grover et al., e-print arXiv:quant-ph/0603132
8. T. Tulsi, L. Grover, A. Patel, e-print

arXiv:quant-ph/0505007; also, Quant. Inf. Comput. 6,
483 (2006)

9. M. Boyer et al., e-print arXiv:quant-ph/9605034,
Fortschr. Phys. 46, 493 (1998)

10. D. Li et al., Phys. Lett. A 362, 260 (2007); also see e-print
arXiv:quant-ph/0604062

11. In the reviewer’s report on this paper, the reviewer in-
vestigated fixed points of the phase-θ search algorithm as
follows. The reviewer let f(εn) = εn+1 = εn[1 + 2(cos θ −
1)(1 − εn)]2. Then the reviewer showed that the equation
has 0 to be an attractive fixed point when 0 < θ < π/2
because 0 < f ′(0) < 1, cos θ/(cos θ − 1) to be an at-
tractive fixed point when π/2 < θ < 2π/3 because
|f ′(cos θ/(cos θ − 1))| < 1, and all the fixed points to be
repulsive when 2π/3 < θ < π. Following the reviewer’s
idea, we can show when θ = π/2, 0 is a semi-attractive
fixed point because f ′(0) = 1 and f ′′(0) = −8 and when
θ = 2π/3, 1/3 is also a semi-attractive fixed-point because
f ′(1/3) = −1 and f ′′(1/3) = −6


